PROPIEDADES DE LOS NUMEROS REALES


La siguiente es una lista con seis propiedades básicas, las cuales bastan para caracterizar completamente las propiedades algebraicas de campo de los números reales. Esto es, de aquí se pueden deducir las demás propiedades.
Los números reales son un conjunto R con dos operaciones binarias + y * el cual satisface los siguientes axiomas.
Axioma 1 Cerradura
Si a y b están en R entonces a+b y a*b son números determinados en forma única que están también en R.
Axioma 2 Propiedad Conmutativa (Suma y Multiplicación)
Si a y b están en R entonces a+b = b+a y a*b = b*a.
Axioma 3 Propiedad Asociativa. (Suma y Multiplicación)
Si a, b y c están en R entonces a+(b+c) = (a+b)+c y a*(b*c) = (a*b)*c
Axioma 4 Propiedad Distributiva.
Si a, b y c están en R entonces a*(b+c) = ab+ac
Axioma 5 Existencia de Elementos neutros.
R contiene dos números distintos 0 y 1 tales que a+0 = a, a*1 = a para a que pertenece a los reales.
Axioma 6 Elementos inversos Si a está en R entonces existe un (-a) en R tal que a + (-a) = 0 Si a está en R y a es diferente de 0 entonces existe un elemento 1/a en R tal que a*(1/a) = 1.

Comentarios

Entradas populares de este blog

FISICA II SERWAY TOMO II

LIBROS DE CALCULO, ALGEBRA, METODOS NUMERICOS

Desafío del Educador Digital Internacional 1 2021